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An alternative to Hunt’s (1973) extension of classical rapid distortion theory is used 
to calculate the turbulence downstream of a rapid contraction. This problem was 
originally studied by Batchelor & Proudman (1954) and Ribner & Tucker (1953), but 
their analyses were restricted to flows in which the characteristic turbulence scales 
were small compared to the spatial scales of the mean flow (usually the characteristic 
dimension of the apparatus). We now consider the case where the turbulence scale 
can have the same magnitude as the mean-flow spatial scale. Relatively simple formulae 
are obtained by calculating the turbulence only in the downstream region where the 
mean flow is no longer affected by the potential field of the contraction. 

The results are then further simplified by assuming that the contraction is large and 
expanding in inverse powers of the contraction ratio. The calculations show that effects 
of finite turbulence scale can be quite significant. We also obtain some important new 
results for small-scale turbulence by expanding the solutions in inverse powers of the 
turbulence spatial scale. 

1. Introduction 
It is now believed that large-scale atmospheric turbulence drawn into the inlet is 

the major cause of aircraft-engine tone noise when the airplane is on the ground and 
has only small forward velocity. These tones are generated because the contraction 
of the flow into the inlet causes the turbulent eddies to elongate in the streamwise 
direction while causing their transverse velocities to be amplified. Then the fan blades 
can cut through a coherent eddy structure many times before it leaves the blade row 
and the eddy therefore acts like a steady inlet flow distortion which is known to produce 
a pure tone sound field a t  the blade-passing frequency of the fan (Goldstein 1976, pp. 
175-208). There is considerable interest in predicting the tones produced by this inlet- 
turbulence interaction and in order to do this i t  is necessary to  know the structure of 
the turbulence a t  the fan face. 

Free-stream turbulence is, on the other hand, known to have an important effect 
on boundary-layer separation and transition and there has recently been considerable 
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interest in predicting this effect - especially in the turbine and compressor stages of 
gas turbine engines where there can be large amounts of turbulence in the stream. 
In  order to do this we must know the turbulence structure a t  the edge of the critical 
region of the boundary layer, which, in turbine stages, is often downstream of a very 
large contraction. 

In  both these cases it is necessary to calculate the turbulence in a stream that has 
undergone a large contraction from an upstream state where the turbulence is more 
or less isotropic. (In the latter case the severe contractions are encountered for the 
most part only in the turbine stages.) Needless to say, such calculations are also of 
interest in their own right. Until recently, these calculations could only be performed 
by using the classical rapid distortion theory initiated by Taylor (1935) and developed 
by Batchelor & Proudman (1954) and Ribner & Tucker (1953). This theory leads to 
very simple results but involves the assumption that the spatial scale of the turbulence 
is small relative to the spatial scale of the mean-flow velocity gradients. It also involves 
the assumption that the turbulence intensity be much less than the ratio of these two 
scales and therefore that the turbulence be very weak indeed. 

However, Hunt (1973) has now developed extension of the theory that applies 
even when the turbulence spatial scale is of the order of or larger than the scale of the 
mean flow velocity gradients - in which case the restriction on the magnitude of the 
turbulence intensity is much less severe. 

By using careful dimensional reasoning, Hunt showed that turbulent fluctuations 
are governed by the inviscid momentum and continuity equations linearized about an 
appropriate steady potential flow. He considered only the case where the Mach number 
is zero and the mean flow is two-dimensional. With these restrictions he was able to 
obtain the required solutions to the linearized equations by first using Cauchy’s 
formula linearized about the mean flow (Batchelor 1967, p. 276) to determine the 
vorticity perturbations and then using the latter to calculate the vortical part of the 
velocity field. This last step was accomplished by solving three second-order partial 
differential equations. The non-vortical part of the velocity was then determined by 
solving a fourth partial differential equation. 

A few years later, Goldstein (1978, 1979) showed that the most general vortical and 
entropic, compressible or incompressible, steady or unsteady solution to the inviscid 
momentum and continuity equations linearized about a steady compressible or in- 
compressible potential flow (which can be either two- or three-dimensional) can be 
found by solving a single second-order partial differential equation, whose solution 
is associated with the non-vortical part of the velocity field. In  Goldstein’s approach 
the vortical part of the velocity field is given and there is no need to calculate it from 
the vorticity. This result is based on a decomposition of the velocity field into an 
irrotational part that is associated with the pressure fluctuations and a rotational 
part that carries all the vorticity and is completely independent of the pressure 
fluctuations. The vortical part is a known function of the upstream boundary condi- 
tionsand the mean potential flow and only the irrotational part (which can be expressed 
in terms of a scalar potential) need ever be calculated. 

Random upstream entropy (or temperature) fluctuations can produce additional 
turbulence downstream of a contraction (Goldstein 1979). This effect is especially 
important in the application of the theory to the turbine-stage problem that was 
described above. But, even though the approach of this paper, which is based on 
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Goldstein’s (1978) theory, can easily be generalized to deal with this effect, we shall 
not do so here. The interested reader is referred to Goldstein (1979) for a discussion 
of the high-frequency solutions to this problem. 

The formulation given by Goldstein (1978) is simpler than the one used by Hunt, 
even for the incompressible two-dimensional mean flow that he treated. But, even 
with this simplification, a great increase in complexity is incurred when the classical 
restriction of small turbulence length scale is removed. However, the present analysis 
can be considerably simplified by first assuming that the mean flow becomes parallel 
a t  downstream infinity and then calculating the turbulence far enough downstream 
from the contraction to ensure that the non-uniformity of the mean flow field has 
decayed. The turbulence then acts like a small perturbation on a uniform flow and 
therefore has a considerably simplified structure. But, even though we are able to 
obtain relatively simple analytical solutions to this problem, they still lead to rather 
complex formulas for the experimentally interesting statistical properties of the 
turbulence. These quantities can therefore not be determined without a considerable 
amount of numerical computations. 

However, for applications such as those described above we are usually interested 
in large contractions and in this paper we shall simplify the formulae by treating the 
inverse contraction ratio as a small parameter (rather than by invoking the classical 
restriction on the turbulence scale). We expect our results to apply even when the 
contraction ratio is not too large, since the large contraction ratio asymptotic expansion 
of the classical rapid-distortion theory results agree with the general formulae even 
for moderate contractions (Batchelor & Proudman 1954). 

We can interpret the present results as corrections to classical rapid-distortion 
theory that account for effects due to the finiteness of the turbulent spatial scale. 
They include wall-backage effects and the effects of non-uniform mean strains on the 
distortions of the upstream turbulence by the mean velocity field. The numerical 
calculations show that these effects can change the mean-square turbulence velocity 
by more than a factor of two even when the turbulence scale is as small as the trans- 
verse dimension of the downstream channel. 

In  $ 2 we discuss the physical model and the linearized equations that govern the 
turbulence motion. The statistical concepts that relate the solutions of these equations 
to the turbulence correlations are described in $ 3. The equations are then solved in 
the region downstream of the contraction in $ 4  (without imposing any restrictions on 
the magnitude of the contraction ratio or the scale of the turbulence). 

The upstream flow can be an external stream, such as would occur for the flow into 
an inlet, or it can be an internal flow of larger cross-section. Some typical configurations 
are shown in figure 2. 

The large contraction ratio limit is treated in $ 5  and appropriate limiting forms 
of the solutions of $ 2 are obtained by using the method of stationary phase (Erdblyi 
1956). The simplified formulas are then used to calculate turbulence intensities and 
one-dimensional spectra in the region downstream of the contraction. 

The classical rapid-distortion theory limit is considered in $ 6 and results are ob- 
tained for arbitrary contraction ratio by transforming a formula given by Batchelor 
& Proudman (1954) into an appropriate co-ordinate system. The transformation is 
different a t  each point of the flow and depends on the geometry of the contraction. 

The numerical results and their physical implications are discussed in 5 7. They show 
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that the amplification effect of the contraction is reduced when the spatial scale of the 
turbulence increases. In  fact, the upstream turbulence is actually suppressed when the 
contraction ratio is less than 5 and the turbulence spatial scale is larger than three 
times the transverse dimensions of the downstream channel. 

2. The governing e4uations and basic assumptions 
Rapid-distortion theory of turbulence was originated by Taylor ( 1935) who sug- 

gested that the turhplent vorticity be determined first and that the turbulent velocity 
then be calculated from this quantity. This approach was followed by Hunt (1973) 
who generalized the theory to include large-scale turbulence. However, Goldstein’s 
(1978) approach,,which we shall follow here, determines the vortical part of the velocity 
field directly and does not require that it be calcuIated from the vorticity. 

We shall consider a high Reynolds number turbulent flow that passes through a 
contraction and has a uniform mean velocity at  upstream infinity. We then assume, 
as is usual in rapid distortions theory, that: 

(i) the upstream turbulence is weak, i.e. the upstream turbulence intensity uL/U, 
(where u; is a typical r.m.s. turbulence velocity and U, is the upstream mean flow 
velocity) is much less than one; 

(ii) the distortion of turbulent vortex lines by mean straining is much greater than 
that produced by turbulent straining; 

(iii) the mean flow and turbulence Reynolds numbers are both large; 
(iv) the flow is unseparated and the turbulence spatial scale is large compared with 

the boundary-layer thickness. 
These assumptions are sufficient to ensure that the turbulence can, in the main, be 
calculated from inviscid equations linearized about a steady mean flow, which can 
be taken as the potential flow through the contraction. However, they do not ensure 
that the linearized equations will be valid at  all points of the flow. But, in most cases, 
this only causes the solutions to ‘break down ’ in some limited regions of the flow. 

Consider, for example, a weakly turbulent flow into an inlet with width 6. The 
situation is then similar to the one depicted in figure 2 ( c ) .  It is known that linearized 
theory becomes invalid within a certain distance s of the stagnation point, A .  This 
distance is small compared to the characteristic dimension, a, of the external flow, 
i.e. 

s / a = E <  1. 

Now, owing to the contraction of the mean-flow stream tubes, a streamline that 
enters the inlet after passing within a distance s of the stagnation point will lie within 
a distance O(Ss/a) of the channel wall once it has passed downstream of the inlet. 
(It may be helpful here to think of the case where &/a < 1.) Then, the turbulence that 
enters the inlet after passing within a distance O(as) of the stagnation point is confined 
to a wall layer of thickness 

We expect the linearized equations to be invalid within this region, which is in any 
case always much thinner than the width of the downstream channel. 

As long as condition (iv) is satisfied, the appropriate boundary conditions at  the 
solid surfaces surrounding the flow is that the normal component of the turbulence 

6,/6 = 8.  
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velocity vanish at these surfaces. It is well known that we can apply this boundary 
condition directly to the solutions of the inviscid equations even though these equations 
are invalid near the surface. 

In  a similar vein, we can impose this surface boundary condition on the solution 
to the linearized equations even though these equations are invalid within a distance 
of O(S,) from the wall. 

We also expect the linearized analysis to become invalid in any region that is far 
enough downstream from the contraction so that the time d/(U,a/S) (where d is a 
typical distance between this region and the contraction; the end of the contraction 
being where the mean flow is deemed essentially uniform) it takes a fluid particle to 
reach this region is no longer small compared to the time scale LJuL on which non- 
linear interactions occur. That is, in any region for which 

(u’,&/U,a)d/Z, = O(1). 

(The same restriction applies to the distance between the upstream turbulence source 
and the contraction. However, the turbulence will be approximately isotropic up- 
stream of contraction and the well-known corrections for decay can be applied. 
It might also be desirable to apply such corrections to the complete turbulent flow 
calculated in the subsequent analysis, cf. Tucker & Reynolds (1968).) 

In  order to simplify the subsequent analysis we shall ultimately require that the 
turbulence be calculated in a region that is far enough downstream from the con- 
traction to ensure that its statistical properties have become uniform in the flow direc- 
tion. Since this region lies within a few integral scales of the contraction, the preceding 
equality is easily satisfied. 

It is probably not necessary to require that condition (iv) hold everywhere in the 
flow, in that the boundary layer can be allowed to separate if it then reattaches at a 
point that is not too far downstream. In order to ensure that this requirement be met 
for inlet flows involving large contractions we may have to suppose that some form 
of boundary-layer control (e.g. suction) is imposed at  the inlet lip. 

When the contraction lies within a continuous duct, such as the ones depicted in 
figures 2(a )  and (b ) ,  the wall boundary layers could become turbulent if the main- 
stream turbulence were produced by a ‘ turbulence generator ’ which was located 
sufficiently far upstream of the contraction. We will then have to assume that the 
weak irrotational flow which these boundary layers induce in the mainstream (Phillips 
1955) is everywhere small compared to the mainstream turbulence fluctuations in the 
region downstream of the contraction where we shall ultimately calculate them. 

On the other hand the large contractions with which we are mainly concerned will 
tend to relaminarize the boundary layers and thereby minimize these irrotational 
fluctuations. 

When the above requirements are met it should be possible to calculate the main- 
stream turbulence from the inviscid equations of continuity and momentum linearized 
about the steady potential flow that corresponds to the particular contraction being 
considered. Thus, we can write the velocity v and pressure p as 

v = U(X) + u(x, t ) ,  
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where U and P are the velocity and pressure of the steady potential flow through the 
contraction and u(x, t )  and p‘ are the velocity and pressure fluctuations of the tur- 
bulence. The latter quantities are solutions to the linearized equations alluded to 
above. 

Goldstein (1978) showed that it follows from the form of these equations that the 
velocity perturbation u has the decomposition 

u = v(b + u(I), (2.1) 

P’ lPo = -Do(b/Dt. (2.2) 

where the irrotational contribution V$ is related to the pressure fluctuations p‘ by 

Here, D,/Dt = a / a t  + U .  V is the convective derivative based on the mean flow 
velocity U = {Ul, U2, U,}, po is the mean-flow density and t denotes the time. The 
contribution u(Z) carries the vorticity and is independent of the pressure fluctuations; 
but, even more importantly, is completely known in terms of the mean-flow quantities 
and the upstream boundary conditions. For the homentropic (i.e., constant entropy) 
flow to which we shall restrict the present analysis, dZ) = {@), uiz), ~p)} is given by 

uir) = ~ m ( x - f u m t ) . a x l a x i  for i = I, 2,3, (2.3) 

where u, is the upstream velocity perturbation which has zero divergence, produces 
no pressure fluctuations and is effectively frozen in the flow. It can be specified as an 
upstream boundary condition in any given problem and can therefore be considered 
to be known. It is discussed at greater length near the end of this section. The quantity 
f denotes a unit vector in the x1 direction and U, denotes the constant upstream mean- 
flow velocity (which is assumed to be in this direction). depends on the mean flow 
through the vector function X = {Xl, X,, X,} of the position co-ordinate vector 
x = {xl ,  x2, 5,). The vector X - fUmt represents the Lagrangian co-ordinates of a fluid 
particle that originated at  upstream infinity a t  a position with transverse co-ordinates 
x, = X, and x3 = X,. As this particle moves downstream it travels along the mean- 
flow streamlines which lie on the intersections of the surfaces X, = constant and 
X, = constant as shown in figure 1. Then, provided the mean flow is not a two- 
dimensional flow with net circulation, X, + x,  and X, -+ x, far upstream in the flow 
(i.e. at x1 = -m). The modifications of the theory that are needed to cope with two- 
dimensional flows with non-zero circulation are discussed by Goldstein (1978). 

When the mean flow is two-dimensional we can set 

and 

where Yr is the stream function of the mean potential flow. 
As long as the mean flow is not a two-dimensional flow with a net source strength 

a t  infinity X J U ,  will approach xl/U, as x1 -+ -m and at  all other points will equal 
the Lighthill (1956)-Danvin (1953) ‘drift’ function 

Here xi ,  ys, zs are the points of the streamline along which the mean flow fluid particle 
travels. The change in XIIU, between any two points on this streamline is equal to 
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Streamlines 9 

FIGURE 1 .  Illustration of Xa and X ,  surfaces. 

the time it takes a fluid particle to traverse the distance between those points. Then 
X, - U , t  remains constant relative to an observer moving with the mean flow fluid 
particle and is therefore a Lagrangian co-ordinate for that particle. 

In  the general case the perturbation potential q5 is found by solving a linear in- 
homogeneous scalar wave equation which is obtained by substituting (2.1) and (2.2) 
into the linearized continuity equation (the linearized momentum equation are satis- 
fied by these formulas for any choice of 4). But we shall limit the analysis to incom- 
pressible flow, so that the continuity equation requires that u have zero divergence 

(2.7) 
and therefore that 

Since u(I)is known, this equation is to be solved for q5 subject to the boundary condition 

fi.Vq5 = -fi.u(I) on S, (2.8) 

vzq5 = - v .u(I). 

that the total velocity in the normal direction A vanish on all solid surfaces S bounding 
the flow. 

As we have already indicated u(I) becomes equal to the upstream solenoidal (i.e. 
divergence-free) velocity perturbation u,(x - !va t ) ,  at upstream infinity (where the 
mean flow is uniform). Then the source term in (2.7) will vanish as x1 -+ - 00 and we 

(2.9) 
can require that 

q5+0 as xl+ -00, 

which in view of (2.1) and (2.2) implies that the irrotational part of the velocity field 
will vanish and there will therefore be no pressure fluctuations at  upstream infinity. 
The entire perturbation velocity will then be equal to u,, i.e. 

u + u , ( x - f U , t )  as xl+ -moo. (2.10) 

It is well known (Kovasznay 1953) that the most general small-amplitude notion 
that can be imposed on a uniform (i.e. constant velocity) flow has a velocity field 
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that can be decomposed into the sum of (i) a disturbance u,(x - fU,t) that is purely 
convected (i.e. frozen in the flow), has zero divergence and is completely decoupled 
from the fluctuations in pressure or any other thermodynamic property and (ii) an 
irrotational disturbance that produces no entropy fluctuations but is directly related 
to the pressure fluctuations. It is important to notice that each of these modes of 
motion is itself a solution to the governing equations and can therefore be imposed 
on the flow independently of the others. In  fact, the upstream vortical velocity 
u,(x-fU,t) will satisfy the governing equations for any vector function u, of the 
indicated argument, subject only to the requirement that V . U, = 0 (which determines 
one of the components of u, in terms of the other two) and perhaps the requirement 
that um2 = 0 at the upstream boundaries when the contraction occurs in a continuous 
duct. We can therefore specify the function u, as an upstream boundary condition 
and the upstream solution will then behave like the small-amplitude vortical motion 
on a uniform flow. 

Now, it is also known that any weak turbulent motion that might be imposed on 
a uniform mean flow can be represented by this type of vortical velocity field. It is 
therefore appropriate to impose the upstream condition (2 .9)  and specify the com- 
ponents of u,(x - fU,t) as an upstream boundary condition. 

We shall require that the upstream turbulent vorticity be homogeneous. This type 
of flow can be generated in the laboratory by inserting a 'homogenizing device ', such 
as a wind tunnel grid, into the upstream region. When the contraction takes place 
within a continuous duct the upstream turbulent velocity will always be non- 
homogeneous within a wall layer of thickness O(Z,). In order to ensure that the vorticity 
be homogeneous over most of the upstream region we will have to require that the 
cross-stream dimension a of the upstream duct be much larger than the turbulence 
scale I , .  The non-homogeneous wall-layer turbulence should then have a relatively 
small effect on the downstream flow. 

3. Calculation of velocity field due to random homogeneous incident 
distortion 

velocity distortion 

where 

It is easy to see that the local velocity field due to an upstream harmonic vortical 

(3.1) u,(x-iU,t) = B"(kfexp[ik. ( x - f U , t ) ] ,  

am = {a,?, a;, a,?> 
is a constant such thatt  
can always be written as 

Qm.k = 0, 

ui = Jii(x I k) e--ikiUmt; 

here and in all subsequent formulae, repeated indices indicate summations from 1 
to 3. The tensor dii acts like a transfer function that relates the local and upstream 
velocity fields. 

It has been shown by Batchelor & Proudman (1954) and by Hunt (1973) that a 
homogeneous but otherwise arbitrary random velocity fluctuation imposed on the 
upstream flow will produce a downstream turbulent flow whose velocity correlation 

(3.3) Rfj (X,  x', 7 )  = U i ( X ,  t )  U j ( X ' ,  t + 7 )  

t This condition follows from the requirement that U, be solenoidal. 
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is related to the sDectrum 

(3.4) 

of the upstream velocity covariance tensor 

R$)(y) = u,~(x - fU,t) umj(x + y-fUmt) (3.5) 
(which, owing to the assumed homogeneity, depends only on the indicated argument) 

The asterisk denotes the complex conjugate. The or,e-dimensional spectrum 

is given by 

Oij(X, x' 1 k , )  = // A & ( x  I k)Mj l (x '  1 k) O$)(k) dk, dk,. 
- m  

4. Solutions for individual wavenumber components 
Before calculating the turbulence spectra it is necessary to find the solution to the 

linearized equations (2.3), (2.7) and (2.8) for an upstream vortical velocity field of the 
type (3.1). We shall suppose that the mean potential flow is two-dimensional and 
incompressible, so that its velocity field U is given by 

where the mean-flow stream function Y satisfies the two-dimensional Laplace's 
equation 

u, = ayP/ax,, u, = - a~ /ax , ,  u, = 0, (4.1) 

(4.2) a2y/ax; + m / a X ;  = 0. 

Our interest here is in internal flows, such as those depicted in figure 2, that undergo 
significant contractions and have constant mutually parallel velocity fields far up- 
stream and far downstream - say Urn and U+, respectively. Then 

yP+ Umx2 as xl-+ -co (4.3) 

and Y -+ U+x2 + const. = U,x,c + const. as x1 + + 00, (4.4) 

where c = u+/um = a/& (4.5) 
is the contraction ratio and a and 6 are the transverse dimensions of the upstream 
and downstream flow passages (see figure 2). On the other hand, it follows from (2.6) 
that 

X1+xl as xl+ -00, (4.6) 

and X ,  -+ aA+(x,/6) +xl/c as x1 + + co, (4.7) 
where 

A+(x2/6) a [I:, (L-')dxl+jom Ul u, (L-')dx,] Ul u+ 

= s" , (2 - 1) d (2) +som (2 - 1) d (2) , (4.8) 

and the integration is carried out along the streamline that approaches the line 
x2 = constant far downstream in the flow. 

16 F L Y  98 
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FIUURE 2. Some typical contracting streams. (a;) Internal flow with branching contraction. 
(b )  Internal flow with single continuous contraction. (0 )  Inlet flow. (d) Flow into a honeycomb- 
type structure. 
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Since the mean flow is two-dimensional we can set X ,  = Y / U m  and X 3  = x3.  Then 
a t  downstream infinity the vortical velocity field (2.3) produced by the upstream 
harmonic vortical velocity field (3.1) becomes (to within an unimportant constant- 
phase factor) 

(4.9) ~ ( 0  + (F, &,? + a@ A'+, e i [ X . ~ f k , ~ A + ( ~ ~ / ~ ) - k ,  U m t l  as x l - + t ,  

(4.10) 

I 
where 

and the prime denotes differentiation with respect to x 2 .  In the downstream region 
the boundary condition (2.8) becomes (see figure 2) 

x = {Xl, x 2 ,  x3) = {kl /C,  ck2, k31, 

a$/ax2 = - ULI) as x2 -+ 46. (4.11) 

Then (4.9) and (4.11) imply that, as x1 -+ co, (2.7) will possess a solution of the form 

4 = 4 (x ) ei(Xizi+Xszu-klUmt), 
0 2  

where q50 satisfies the ordinary differential equation 

(4.12) 

$: - y2$,, = - i x1 + x3 ei(Xa%+kiaA+) - [(ca? + a@ A'+) &a%+kiaA+)]', (4.13) F 1 
subject to the boundary condition 

4; -+ - (c@ + a&? A:) ei(xrxa+k@+) as x2 -+ _+ $8, (4.14) 

where Y = (xS+x?)*. (4.15) 

Equation (4.13) can be solved by standard methods to obtain 

(4.18) 

(4.19) 
_+ sinh yS(y + 7) + sgn (y - 7) sinhys(1- I y - 71) 

2 sinh y6 %*(Y 17) = - 

It now follows from (2.1), (4.9), (4.10), (4.15) and (4.16) that the transfer coefficients 
defined by (3.2) are given by 

Aij(x 1 k) = Mi& 1 K ,  C K )  ei(xizi+xazs), 

where 
Ml1 = ( ~ g F l + - i c ~ ~ F $ ) / c ,  M12 = ~ K , F $ ,  M13 = -K1K3F,+/c, 

M,, = K ~ [ K : F / ~ ~ +  - ~ C K ~  F$ - e*KaY+KiA+(u))] /~l ,  

(4.20) 

(4.21) 

(4.22) 
16-2 

M21 = - ( i ~ : F g  +CKgy2Fi)/K1, M22 = c y 2 F ~ ,  M23 == ~ K ~ F ; ,  

MS2 = i w 3  F$, 
M,, = ek(K,U+K,A+(U)) - K ~ F +  

3 1 3  

K~ E Ski for j = I ,  2 ,3;  7 = (K: + (K1/c)2)+ 
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and (4.23) 

The three-dimensional spectrum @iT), which appears in (3.6), can be expressed as 
a function of kl, and l,, where as we have indicated E ,  denotes a characteristic spatial 
scale (say the integral scale) of the upstream turbulence. Upon putting x’ = x and 
7 = 0 to obtain one-point covariances and using (4.17), (4.20) and (4.22), (3.6) 
becomes 

Here we have put u = l w / S .  Now (4.24) will generally lead to formulae that are too 
complex to be evaluated with a reasonable amount of computation. In the next two 
sections we therefore simplify results by considering the two asymptotic limits 

(i) c - +  00, u =  O ( l ) ,  y =  O(1) (4.25) 

and (ii) a-l -+ co, c = O ( l ) ,  y = O(1). (4.26) 

In both these cases u/c = 1,/S --+ 0. The first corresponds to the case where the con- 
traction is large and the turbulence lsngth scale is finite and the second corresponds 
to the case where the turbulence spatial scale is small relative to both the upstream 
and downstream dimensions of the contraction but the contraction ratio is arbitrary. 

Results given by Durbin (1979) can be used to prove that, as long as the integrals 
remain convergent, 

where 

and 

(4.27b) 

( 4 . 2 8 ~ )  

(4.28 b )  

In  appendix C we show that the limit of ( 4 . 2 7 ~ )  as u -+ 0 is essentially equal to the 
limit of (4.273) as c -+ 00 even though 

limBij + limBij. 
- 

K1-m c+ m 

5. Large contraction-ratio limit 
Batchelor & Proudman ( I  954) considered the case of homogeneously distorted 

turbulence. They showed that in this limit the asymptotic formulae for a large con- 
traction ratio provide a good approximation to the formulae for an arbitrary contrac- 
tion ratio over the range c > 2. It is therefore reasonable to simplify the formula 
(4.24) for the case where 1,/6 is finite by taking the large contraction-ratio limit 
( 4 . 2 7 ~ ) .  
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FIGURE 3. Variation of T,, with 0 for the case where A and A’ are stagnation 
points in figure 2. 

Now, it can be seen from (4.8) that A+(T) is of order one as c + co for - 4 < 7 < i 
(see also specific examples worked out in appendices A and B). Hence, letting 

KO ( K i  $- K;)&, 15.1) 

introducing the polar angle 8 by 

K~ = K~ cos 8, K~ = K~ sin 8, (5.2), (5.3) 

and using the method of stationary phase (ErdBlyi 1956) to evaluate (4.23) for large 
K ~ C ,  we obtain 

where T~ is a solution of 
A;(qo) = - tan8  

(5.4) 

(5.5) 

and the primes now denote differentiation with respect to yo. 
For flow into an inlet or for internal flows with stagnation points (at the points A 

and A‘ in figure 2b), A;(T) will go to infinity a t  the end points 7 = k 8 and 8 will 
therefore equal T 4. Then, the variation of T~ with 8 will be as shown 
in figure 3. The examples worked out in appendices A and B correspond to this case. 

when yo = 

K K  
M31 = - i c L 3 F z f + O ( l ) ,  M32 = ~ c K ~ F $ ,  M33 = O(1). 

Inserting (5.4) and (5.6) into (4.24) and using (3.3) we find that 

K1 

where we have put 
471 
83 H(K) - ( K i  @jF) - 2K1 K2 @$g) + K; @k;)). 
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Similarly, inserting (5.4) and (5.6) into (3.8), we obtain 

We shall now restrict our attention to the case depicted in figure 3 where po  + -t 4 
when 8 +- T in. Since 

while it follows from (5 .5)  that 

d K  = dK3Ko d K O  d6 

dO/cos2 8 = - A: (p,) d7, 

and that cos 8 = f [ 1 + [A>(70)]2]-*, 

we can change variables of integration in (5.7) to obtain 

Similarly, since it follows from (5.3) and (5 .5 )  that 

dK$ = %A’; (To) d70, 

we can change variables of integration in (5.9) to obtain 

When the upstream turbulence is isotropic 

Substitution of this into (5.8) gives 

(5.11) 

(5.12) 

Now, except as explained in appendix C, we can replace 7 = (K: + ( K ~ / C ) ~ ) ~  by for 
large values of c. Then, %* for j = 1 , 2  will be independent of K~ and, when the up- 
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stream turbulence is isotropic, we can use the fact that E ( k ) / k 2  depends only on 
k2 = ( K ~ + K ~ ) / S ~  to write (5.10) in the form 

For the Kolmogorov spectrum 
5 5 2  g ( / 1  )*k4 

E ( k )  =- 92 O0 

9n [ (g2/Zm)2 + k2lLez’ 

where g2 = n*I’(#)/I’(&) and I ,  is the integral scale, 

- d K i  + ;(Kg + CX2) 

where a = g2(S/lm). 

(5.15) 

(5.16) 

6. Small-scale turbulence : quasi-homogeneous limit 
We now consider the case (4 .276)  where K $ 1 and c = O(1). This is analogous to 

the classical theory of homogeneously distorted turbulence that was developed by 
Ribner & Tucker (1953) and Batchelor & Proudman (1954). 

When 7 is large 
~-YIU-VI e-3 Y-71 

; X2*+ -sgn(y-r)- xl+ +- 
2 .  27 

Then the principal contribution to the integral in (4.23) comes from the vicinity of 
7 = y and we can therefore replace A+(q) by A+(y) + A;(y) (7 - y) to obtain 

eid(KzY+Ki A + @)I e ~ ~ , ~ + ~ l A + ( ~ ) I  ~ 

F: - 2 2  ; F $ N -  3 x 2 7  (6.2) 

where i2 = C [ K ~ + K ~ & ( Y ) ]  and Z2 = T 2 + f i .  Then 

M.  = i ? n  - 2 2  ‘L gkniEkml T 13 .~~C[%Y+KIA+I ,  
a5 

where eijk is the permutation tensor, 
1 

and (see (4.10)) 

so that 
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It is shown in appendix D that (6.3) can be transformed into the formula used by 
Huntt (1973) and by Batchelor & Proudman (1954). It could have been obtained 
more directly as the high-frequency solution of (2.7) with (2.3)-(2.5) and (3.1) 
inserted (see, for example, Goldstein 1979). 

Using (6.3) in (3.3) and (4.24), assuming that the upstream turbulence is isotropic, 
introducing polar co-ordinates and carrying out the integration with respect to the 
radial co-ordinate, we obtain see (4.10)) 

I 

where the integration is carried out over the unit sphere k = 1. 
These results are essentially given by Batchelor & Proudman (1954). A similar 

formula can be written down for the turbulent shear stress F2/z. Upon introducing 
the polar co-ordinates 

K1 = K cos 6 cos (8- e,), 
K~ = Kcos$sin(8-8,), (6.6) 

(6.7) 

(6.8) 

we find that g2 = + (h2/e2)2 + A;, (6.9) 

i K3 = K Sin 6, 
where tan0, = D+(sgnA;)(D2+ l)*, 

and D = [:a -+c2(A~-1)]/202A;, 

where A, = K COS 6 COS 8, h, = K COS 6 Sing, h3 = K3, (6.10) 

(6.11) and e -  

Notice that e1e2 = 1; el > e2. (6.12) 

Inserting these results into (6 .5 )  and the corresponding formula for the turbulent 
shear stress, we obtain 

1 
e2 = 

1 
- c( 1 - A;(y) cot cop' c( 1 + A;(y) tan B,)*' 

(6.13) 

t Equation (D 1) is exactly the same as Hunt's equation (5.45b). This can be seen by noting 
that Hunt's ymk in his equation (3.11) is equal to the transpose of our Ti:. 
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FIGURE 4. Intensity changes for bisymmetric two-dimensional contraction 
(from Batchelor & Proudman 1954). 

where we have put 
e 

coset = --Icoseo < I, 
C 

4 
( :: e 

sin = 2 sin e,, = I - 2 cos2 o0) 
C 

(6.14) 

(6.15) 

are the mean-square velocity ratios in the directions of principal strain that were 
evaluated by Batchelor & Proudman.? They are given in terms of elliptic integrals 
by their equations (5.13)-(5.15): their c corresponds to our el.  For el > 2 Batchelor 
& Proudman’s large contraction-ratio asymptotic formulae (5.19) can be used with 
acceptable accuracy and for smaller values of el the p’s can be obtained from their 
figure 3 which for convenience is reproduced here as figure 4. 

The transformation described above was, in a sense, suggested by Batchelor & 
Proudman (1954); but their argument was not strictly correct since turbulence 
properties such as the one-dimensional spectra cannot be related to those of a sym- 
metric contraction. (These quantities must be calculated directly by substituting 
(6.3) via (4.20) into (3.8).) In  particular (6.13) shows that a general two-dimensional 
distortion can be decomposed into a plane strain, with strain-ratio e l ( y ) ,  followed by  
a rotation through - e t ( y ) .  (Actually, the straining is preceded by a rotation through 
Bo(y); but the isotropic turbulence is invariant under this transformation.) 

ct  = c( 1 +A:)* + 00. 
Suppose first that 

t Batchelor & Proudman (1954) actually derived these results for a constant area contraction, 
but they also apply to two-dimensional contraction when the x, direction is taken to be the 
cross -channel direction. 
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This will occur when c -+ co or when A: -+ co. It follows from (6 .8)  and (6.11) that 
el -+ c(A;" + l)*, e2 --f l/el, cos 0, --f (1  + A:)-* and sin 0, -+ A!+( 1 + A;")-*. Hence, it 
follows from (6.14) and (6.15) that 

cos Ot -+ 1, sin Or -+ 0 and cos Ot sin O t  j. Ah;/c2( 1 + A;"). 
Using these in conjunction with Batchelor & Proudman's asymptotic formulae for 

I - 
~ 1 ~ 2  3 A; 
=-+-- 
U t l  4 C t  

AS we have already indicated the one-dimensional spectra must be calculated directly 
from (3.8).  Thus, substituting (6 .3 )  in (4 .20) ;  using the result in (3 .8) ;  taking the limit 
c -+ CO; and using the complementary Watson's lemma developed by Durbin (1979), 
we obtain, after considerable manipulation, 

$(17 /6 )  - $( 1 )  -In )] -In (4c2( 1 + A;")) 
k:( 1 + A;") 

as c - t c o ,  - 2 ObT)(k,) for k,c = O(1) 

for k, = O(1) 
(6 .17a)  

3 

i=l 
(6.17b) 

C 
O,, -+ O,, -+; ( 1  + A;") C OiF)(k,[ 1 + A:]*) as c -+ co, 

where $ ( X )  denotes the logarithmic derivative of the gamma function, 

g, = 55g f /36n2  

and k ,  is non-dimensionalized by 1,. When k,  = O( 1) the spectra ( 6 . 1 7 ~ )  and (6.17b) 
can be written in the form 

Oii = ( 1  + A;")* function (ct, k,( 1 + AT)*). 
This shows that, in addition to increasing the effective strain from c to ct, the drift 
function gradient acts to compress the turbulent energy into the low-frequency portion 
of the spectrum where k,(l +A;")* = O(1). The O ( C - ~ )  term in (6 .17a)  for k,c = O(1) 
has been retained because the remaining terms go to zero like k2, as k,  -+ 0 .  I n  fact, 
it is easy to show (by substituting (6 .3)  via (4.20) into (3 .8) )  that even when c is 
arbitrary 

O,,(O) c ( l + A T )  A;"c -= -- 
@ ? l ( O )  2 2(c + 1 ) 2 '  

(6 .17c) t  

(6 .17d)  

(6.1 7 e )  03 , (0 )  - c(l+A:) A;2(2c+l )c  -- - 
@ ? l ( O )  2 2 (c+  I), ' 

t ( 6 . 1 7 ~ )  is given incorrectly by Townsend (1976) as l/c. 
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Thus, it is not true in general that O,, = 033. Curiously enough, the drift has no effect 
on the streamwise integral scale, Oll(0). As c --f 1 the drift increases O,,(O), more than 
03,(0). As c -+ 00 the drift increases both O,,(O) and 03,(0) by the same amount. 

Now, suppose that c + 1 and that 4 - Iy/ > c -  1.  Then it follows from (6.8) and 
(6.1 1 )  that el --f c and A’ 

U+ 

sin 0, -+ 
[A;” + 4 ( c - 

*’ 

2(c - c-1) 

[A;” + 4(c - c-1)2])‘ 
cos so + 

But A+ = O ( ( c  - c-l) ,)  as c -+ 1 so that cos Ot = 1 + O((c  - ~ - 1 ) ~ ) )  sin Ot + 0 and 

Hence 

and 

sin Ot cos Ot + A;/S(c  - c- l ) .  

(6.18) 

(6.19) 

The pi in (6.18) can be evaluated by using Townsend’s (1976) formula (3.11.9) pro- 
vided terms of O((c - c-1)2) are ignored. These expressions have been used to obtain 
(6.19). 

I n  both of the limits ct --f 00 and c --f 1,  Ot -+ 0 and the principal directions of the 
correlation tensor coincide with the co-ordinate directions xl, x,, x3 as they would 
for a symmetric contraction. On the other hand higher-order terms must be retained 
when evaluating the directional factor cos Ot sin Ot for the turbulent shear stress. In  
this sense is produced by effects of higher order than those producing the u:. 

7. Results and discussion 
The results of the previous two sections were used to calculate the mean-square 

turbulence velocity ratios and turbulence spectra as functions of transverse distance 
across the downstream channel. The upstream turbulence was assumed to be iso- 
tropic, but this is not essential - any homogeneous turbulence distribution could 
have been considered. 

7.1 .  Large contraction-ratio limit 

Figures 5-7 are plots of the mean-square velocity ratios for the case where the con- 
traction ratio is large but the turbulence spatial scale is arbitrary. The corresponding 
one-dimensional spectra a t  the centre-line of the channel and halfway across the 
channel are shown in figures 8-10. The drift function derivative A; is calculated from 
the large-c asymptotic expansion (A 8). This result was derived for the channel flow 
shown in figure 15. But it is exactly the same as the large-c asymptotic expansion of 
A; for the two-dimensional idealized inlet flow? analysed in appendix B and depicted 
in figure 16. It is easy to see that the channel-flow solution also represents the flow in 
the branching contraction shown in figure 2 (a )  and the flow into the infinite cascade 

t The real flow into this type of inlet would, of course, tend to separate but we can interpret 
this flow as an idealized model of an actual unseparated inlet flow. 
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611, 
FIGURE 5 .  Mean-square streamwise turbulent velocity ratio for large contraction 

ratio and finite turbuIence scale. (6)  0, y = 0.1; A, ?J = 0-2; 0, y = 0.45. 

shown in figure 2 (d). The latter configuration might represent a honeycomb-type 
turbulence control device. Figures 5-10, therefore, apply to both inlet flows and 
internal flows. Notice that there is a stagnation point upstream of the contraction 
in both the flows alluded to above. Viscous effects will set up a recirculation region 
which eliminates the stagnation point in the non-branching internal flow. But the 
present model should still serve as a good approximation to the real flow. 

As can be seen from (5.11)-(5.15), the mean-square streamwise velocities along with 
their spectra are inversely proportional to c while the mean-square transverse velocities 
and spectra are directly proportional to c .  The quantities plotted in figures 5-10 are 
therefore independent of contraction ratio. 

The amplification of the transverse velocity components can be understood in 
terms of the vorticity amplific,ation produced by the non-uniform mean flow. Thus, 
the surfaces of constant drift function, which coincide with the mean-flow fluid sur- 
faces that were initially perpendicular to the flow when they were at  upstream infinity, 
are bent over by the retardation of the mean flow a t  the upstream corner C shown in 
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FIGURE 6. Mean-square transverse turbulence velocity ratio for large contraction ratio and 
arbitrary turbulent scale. ( b )  0, y = 0.1; A ,  y = 0.3; U, y = 0.45. 

figure 11. Then a vortex line such as AB (which must always move with the fluid) 
will be bent over and stretched as it is convected downstream by the mean flow. The 
corresponding increase in the streamwise vorticity causes the transverse velocity to 
increase. This effect also occurs in turbulent flows over blunt bodies (for a discussion 
of this point and related experiments see Britter, Hunt & Mumford 1979). 

Figures 5-7 show that the turbulence levels always decrease with decreasing 6/1, and 
that the turbulence is actually suppressed below its upstream value when &/la is suffi- 
ciently small (e.g. figure 6 shows that 2 is suppressed when c = 5 and S/1, < 0.33). 
This is, of course, to be expected because the blocking effect of the solid boundaries, 
which tends to suppress the turbulence levels, becomes negligible for the small- 
scale turbulence that corresponds to large values of &/la .  The increased amplification 
with increasing &/la also occurs because, as pointed out by Hunt (1973), the 
interaction between the turbulence and the mean flow, which is responsible for this 
amplification, increases with decreasing wavenumber. 
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FIGURE 7. Mean-square transverse turbulence velocity ratio for large contraction 
ratio and arbitrary turbulence scale. 

The suppression effect is reminiscent of that found by Loehrke & Nagib (1976), 
in their experiments on honeycomb-type turbulence control devices. 

The dashed curves in figures 6 and 7 represent the asymptotic values of 2 and 
as 611, -+ m. They are calculated from the large-c asymptotic expansion of the classical 
small-scale turbulence formulas that are given by (6.16). The results are fairly close to 
the curve for &/la = 5 ,  except perhaps for 2 near the wall, where figure 6(b) shows 
that this quantity is still increasing with cY/lm. In appendix C we show analytically 
that equations (5 .13b ,  c) do indeed approach the results given by (6.16) as 6/1, .+ 00. 

This implies that the limit c -+ m can be interchanged with the limit 611, + 00 for ui 
and 3. 

since the curves in figure 5 are based 

- 

Corresponding results are not shown for 



The ampli$cation of turbulence by a contracting stream 495 

10-4 I I 1 I I I 
lo-* 10-1 1 10 1 0 2  103 

tc, = 6k, 

FIGUBE 8. One-dimensional spectra for streamwise turbulence velocity. Large contraction ratio 
and arbitrary turbulence length scale. (a) y = 0 ;  ( b )  y = 4. -, 6/1, = 10; - -, & / I ,  = 1 ; 
- * -, S / l ,  = 0.2. 

on the non-uniformly-valid formula ( 5 . 1 3 ~ )  with 7 set equal to 1 1 ~ ~ 1  rather than on the 
uniformly valid result (5.10) where the second term in 7 is retained. In  appendix C 
we show that this latter result does indeed agree with (6.16) in the limit as 6/1, + 00. 

It is therefore probable that the curves of figure 5 will be inaccurate for large 6/1,. 
The transverse turbulence velocity @ becomes infinite at  the walls. This can be 

explained physically by noting that the upstream stagnation point produces an infinite 
stretching and streamwise alignment of the vortex lines that were transverse to the 
flow when they were far upstream (see discussion in Hunt 1973, $5.3.3).  This causes 
an infinite streamwise vorticity a t  the boundary of the downstream region which in 
turn produces an infinite transverse velocity. The large velocities, of course, imply 
that the linearized theory is invalid near the walls (see remarks about the wall layer 
in $2) .  

The mean-square streamwise velocities remain relatively constant for large S/1, 
and increase with distance from the centre-line to double their initial levels when 6/1, 
is small. For intermediate values of 8/Zm, 2 remains relatively constant over most of 
the downstream channel and then increases rather abruptly near the walls. At large 
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FIQURE 9. One-dimensional spectra for transverse turbulent velocities. Large contraction ratio 
and arbitrary turbulence length scale. (a) y = 0 ;  ( b )  y = 2. See figure 8 for the symbols. 

values of 611, it exhibits the rapid increase with distance from the centre-line character- 
istic of q. (Recall that 2 becomes equal to u: as 6/1, becomes large.) 

Equations (4.18) and (5.7) show that u? = 0 right at  the wall; but C+ -+ 00 as the 
wall is approached from within the channel, causing the u2 intensities in figure 6 to 
increase without limit as the wall is approached. Physically, this occurs because the 
vortex lines pile up at  the wall and the amplification of u2 by vortex stretching is 
able to completely counteract the wall blockage effect. Of course A; would not tend 
to infinity and 3 would approach zero a t  the wall if there were no upstream stagnation 
point. 

Equations (5.13) can be expanded for small values of 6/lm. The analysis is rather 
delicate but can readily be worked out by using Durbin's (1  979) expansion technique. 
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FIGURE 10. One-dimensional spectra for transverse turbulent velocities with large contraction 
and arbitrary turbulence scale. (a) y = 0;  ( b )  y = a. See figure 8 for the symbols. 

The result is that 3 N (6/1,)8 as S/1, -+ 0. Britter et al. (1979) previously found, and 
verified experimentally, the more general result that 2 N 2 ( 6 / l m  = 0) + 0 ( ( 6 / l m ) ~ )  as 
6/1, -+ 0, i = 1 , 2 , 3 .  In our caseq(6/1, = 0 )  = 0. The slopes of the curves in the second 
parts of figures 5 and 6 are very close to 6 at  the lowest value of 6/1, but the slope of 
the 2 curve is only about 0.61 at  6/1, = 0.1. However, the figure shows that the slope 
is still increasing with decreasing 6/lm. 

The spectral curves plotted in figures 8-10 all have a slope of -Q at  sufficiently 
large values of k,6. This is apparent from the figures for the transverse velocity spectra 
but, except for the small-scale turbulence case where 6/1, = 10, the streamwise 
velocity spectra have not been carried to high enough wavenumbers to achieve this 
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FIGURE 11. Distortion of vortex lines. 

behaviour. It can also be seen that the large-wavenumber portions of the transverse 
velocity spectra corresponding to  different values of S/1, are displaced from one an- 
other by the ratio of their 6/1, values. Thus, the large-k,S portions of these curves 
would lie on top of one another if they were plotted against k, l ,  rather than k,S. 
This is to be expected since the high-frequency portion of the spectra should behave 
as small-scale turbulence and not be blocked by the walls of the channel. The stream- 
wise velocity spectrum comes fairly close to also exhibiting this behaviour but the cal- 
culations have not been carried to  high enough. wavenumbers to obtain an 'exact' 
result. 

Like the turbulence velocities themselves, the one-dimensional spectra a t  y = 

are not substantially different from the corresponding centre-line spectra. Not sur- 
prisingly, the biggest differences are in the levels of the low-frequency portions of the 
spectra. 

Figures 9 and 10 shows that O,, and O,, become identical when S/Z, = 10. This is 
also true for the large contraction-ratio expansion of the classical small-scale turbu- 
lence formulae given by (6.17b). I n  fact, the 6/1, = 10 curves are exactly the same 
as the results calculated from the small-scale turbulence formulae (6.17 b).  This of 
course shows that the limits c + c o  and S/l,+Oo can also be interchanged when 
calculating the one-dimensional spectra of the transverse turbulence velocities. 

Unlike the transverse velocity spectra, the streamwise velocity spectra tend to 
zero as Sk, --f 0.  I n  the asymptotic limit process i t  was assumed that c would be large 
enough to ensure that cSk, would also be large. The expansion therefore becomes 
invalid as k ,  + 0 ,  where the neglected terms of O(c-I) become important. However, 
the behaviour of the classical small-scale turbulence spectra, for arbitrary c given by 
(6.17c),  suggests the manner in which O,,(O) should tend to zero as c + co. We have 
not included the calculations of the small-scale turbulence spectra for arbitrary c that 
would serve to  illustrate its development from the undistorted spectrum O,",(k,) to 
its large-c asymptotes given by (6 .17a)  and (6.17b); but its behaviour is somewhat 
analogous to that shown in Hunt's (1973) figure 11 .  

We could have made the present results uniformly valid in wavenumber space by 
retaining higher-order terms in c-l but the linearized analysis itself may be inadequate 
for calculating the large contraction-ratio limit of the streamwise velocity correlations 
and their spectra. This is because the energy in the transverse velocity components 
of the turbulence increases while that  in the streamwise component decreases. Then 
while the energy transfer between the turbulence wavenumber components, which is 
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FIGURE 12. Mean-square streamwise turbulence velocity ratio for small-scale turbulence and 
arbitrary contraction ratio. (a) Internal channel flow. (b)  Inlet Aow. -, c = 1.02; - - - -, 
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neglected in linear theory, represents only a small energy drain relative to  the trans- 
verse velocity components it can be a significant fraction of the energy in the stream- 
wise components. 

7.2. Small-scale turbulence : quasi-homogeneous limit 

Figures 12-14 are plots of the mean-square turbulence velocity ratios for the case 
where the turbulence spatial scale is small but the contraction ratio of the flow is 
arbitrary. The calculations are based on equations (6.13) and the drift function deri- 
vatives are calculated from the equations given in appendices A and B. The first part 
of each figure corresponds to  the internal flow depicted in figure 15 and described in 
appendix A. The second part corresponds to the two-dimensional inlet flow depicted 
in figure 16 and described in appendix B. The results for these two flows are quite 
similar and are appreciably different in magnitude only near the wall. 
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FIQURE 13. Mean-square transverse turbulent velocity ratio for small-scale turbulence and arbi- 
trary contraction ratio. (a) Internal channel flow. ( b )  Inlet flow. See figure 12 for the symbols. 

The curves agree with the asymptotic expansions (6.18) for small values of the con- 
traction ratio and with the asymptotic expansions (6.16) for large values of the 
contraction ratio. 

Equations (6.18) imply that the 2 will be independent of position y when c 5 2 
and the figures show that this occurs in the main part of the channel. The expansions 
(6.18) are invalid near the wall where the 2 are nonconstant. In  fact, C+ = c( 1 + [A;]z)* 
will be large and the large contraction-ratio expansion (6.16) will apply when 

4 -  IyJ < c- 1.  

The figures show that the results for different contraction ratio are indeed similar 
near the wall. 

Equations (6.16) imply that 4 and Li should become equal when C+ becomes large 
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FIGURE 14. Mean-square transverse velocity ratios for small-scale turbulence and arbitrary 
contraction ratio. (a) Internal channel flow. (b) Inlet flow. See figure 12 for the symbols. 
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FIGURE 14. Mean-square transverse velocity ratios for small-scale turbulence and arbitrary 
contraction ratio. (a) Internal channel flow. (b) Inlet flow. See figure 12 for the symbols. 

and figures 12 and 13 show that 2 and 2 differ mainly when c is small and y is not too 
close to  the wall. 

It can be seen that the amplification of the transverse velocity components and the 
suppression of the streamwise velocity coniponents increases at all points of the 
channel when the contraction ratio is increased. The effect is always greatest near the 
walls, and the size of the wall region where this enhanced effect occurs always increases 
with contraction ratio. For small contractions the turbulence is nearly unaffected by 
the contraction over the major portion of the channel. 

Since no boundary conditions are applied in the small-scale limit we can take any 
mean streamline to be the wall. Then for continuous internal flows this streamline 
can be chosen to make A; non-singular a t  the wall. We can then account for surface- 
blockage effects by appending a wall layer of thickness 0(1,/6) and imposing a no- 
flux boundary condition across this layer. The analysis of such a layer was worked 
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FIGURE 15. Geometry of the internal contracting flow. 

FIG- 16. Geometry of two-dimensional inlet flow. 

out by Hunt & Graham (1978). Let the turbulence intensity a t  a point one integral 
scale away from the wall be qL; i = 1 , 2 , 3  and the corresponding distance from the 
wall be Y ,  then the result of this analysis can be written as 

as Y -+ 0. 
G-+ O((  Y/ko)+) 

u; + u; -+ UqL + UfL  + u& - 1  - -  - - 

8. Concluding remarks 
The results obtained by Batchelor & Proudman and Ribner & Tucker for the 

amplification of turbulence by a contracting stream have been extended to include 
the effects of finite turbulence length scale. The calculations show that the blocking 
effect of the solid surfaces, which only occurs near the walls when the turbulence 
scale is small relative to  the downstream duct width, will, at intermediate scales, 
greatly limit the amount of amplification of the turbulence that the contraction can 
produce and in some cases will even cause the turbulence to  be suppressed. 

The present analysis can be extended to include compressibility effects for cases 
where it is possible to  separate out the acoustic field from the turbulence. The tech- 
niques developed herein can also be used to predict the effects of finite turbulence 
length scale on entropy-generated turbulence. 

The authors would like to  thank Dr Theodore Fessler for carrying out the numerical 
computations and Dr J. C .  R.  Hunt and Dr H.  M. Nagib for their helpful comments. 
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Appendix A. Calculation of drift function for a converging channel 
The incompressible flow through a two-dimensional converging passage can be 

modelled by superimposing a uniform flow on an infinite row of point sources distri- 
buted uniformly along the x2 axis (see figure 15). This produces a uniform velocity 
field at  both upstream and downstream infinity. 

The complex potential W = Q + iY is given by 

where 2 = x1 + ix,. Hence the complex conjugate velocity [ = U, - iU2 is given by 

Taking the imaginary part of (A 1 )  we obtain 

cot(nx2/a) n 
x2-- - tan-l '+ - a { [ tanh (nxl/a,l + 2). 

y=- u+ -k u m  

2 2 n  

Then yP-+ U+x, as x l+  +a. 

Solving (A 3) for xl,  we find 

a 
x ---In 
- 277 

sin-( 2n Y--x2Uw ) 
a U+-Um 

a U+-Uw 
'sin-( 2n Y-X2U+ ) 

. (A 6) 

sin (2) sin (2) 
2nx 1 2nx2 

cosh 2 = - - [ 2 cos (a) 
a 2 

Taking the imaginary part of (A 2), we find 

u+ - u m  u - -___ sin ( 2nx2/a) 
2 -  2 cosh (27rx1/a) + cos ( 2nx2/a)' 

Hence it follows from (A 5) and (A 6) that 

Then since 
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it follows from 
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(2.8) and (4.3) that  
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sin-( 2n Y - x z U +  ) 
sin- - 

In[ a 2:liy 
a urn 

Hence it follows from (A 4), ( 4 4 ,  (4.7), and (4.17) that  

In[sin (2ny)l -In [ sin ( ‘ ~ j ] ]  - +constant. (A 7 )  

1 
277 

Then A+(y) = - -(In [sin (2ny)l- In y> + O(c-l) as c +. 00, 

(A 8) 
1 

+O(c-l) as c + m ,  
1 

Ak(7)  = 7 -___ 
-ny tan2n-y 

and 
A;(ro) = 2n [ 1 --J-]+~(c-l) as c + m ,  

sin2 27r7, ( 2 ~ 7 ~ ) ~  

Appendix B. Calculation of drift function for two-dimensional inlet flow 
The incompressible flow into a two-dimensional inlet can be calculated by super- 

imposing a uniform flow onto the solution for the flow into a two-dimensional channel 
that  is a t  rest relative to the fluid a t  infinity (see figure 16). 

The problem with zero mean flow a t  infinity is discussed by Lamb (1932). The 
streamlines are depicted on his page 74. When c + 00 the formulas obtained below 
will reduce to this result. Unlike the case considered in appendix A, the flow into the 
channel produces a sink flow far upstream which violates the criterion for the validity 
of (2.6) that  is set forth just  above that equation. However, this formula is valid for 
all three-dimensional flows and we shall show below that the formula which we obtain 
is the correct ‘inner expansion’ of the drift function for a three-dimensional channel 
of large aspect ratio. The complex potential W = 0 + iY is given by 

(B 1)  W = ZU + e-2n(W-UmZ)/(L’+-Um)/S, + 
where Z = xl + ix,. Hence the complex conjugate velocity 5 = U, - iU2 is given by 

where A 2T/S(U+ - Urn). (B 3) 

Taking the real and imaginary parts of (B i) ,  we obtain 
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Then eliminating CD 

A(% U+ - u') 
tan A(Y - U,x,) 1- xzU+-Y 

A(U+-  = -In sin A(Y - Urnx,) 

Taking the imaginary part of (B 2 )  and using (B 5) to eliminate x,, we find 

Hence from (B 5 )  and the second (B 4) 

Now in this case i t  is impossible to define X, by (2.8) since the integral will not 
converge. But since 

we find 
~XZlUZ(Xl(~2, Yh x2) = dx,/U,(x,, X d Y ,  x1)) 

- - 

The integral will now converge but the left-hand side of this equation will not 
approach x,/Urn as x1 .+ - co since @ - Umx, is logarithmica,lly infinite there. This is 
because the flow is two-dimensional. However, we can think of this solution as a 
near-field approximation to  the solution for a three-dimensional channel of large aspect 
ratio. I n  the three-dimensional solution @-U,x, will approach zero and we can 
therefore identify the left-hand side of this result withX,/U,. 

Then since it follows from (B 4) and (B 5 )  that 

@ +  U+xl as xl+ -00 I X2U+-Y 
sin A (Y - Urn x 2 )  ' 

-A(U+- U , ) x ,  + In 

we find 

Hence it follows from (4.5), (4.7) and (4.17) that  

[lnsin2m~-Iny]. 
27T 

Notice that this becomes identical to (A 7)  when c -+ 00. 
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Appendix C. Limit of large contraction-ratio solution 

In  order to calculate lim (lim u<) we must retain the K ~ / C  term in 
0-0 -03 

j j  E ( K i  + (K1/C)2)% 

Then if, in accordance with (4.23), we let 

[P.x,-(y I ro)I2 - [.x,+(Y I roll2 W 2 + 7 0 ' .  

Since this quantity is effectively equal to zero except when qo = y it follows that 

when c is large the integral in the first of equation (5.10) would become infinite. 
Therefore in order to obtain a formula that gives the correct behaviour for large but 
not infinite c we must retain this term and let c --f co after the integration is carried 
out. Thus when the upstream turbulence is isotropic H is given by (5.12) and is there- 
fore independent of its second argument - tan-l A;(y). Then since 

K~ &KO dKg = sin $ K ~  dK d$, K~ = K sin $, K, = K cos 4, 
it  follows from the first equation (5.10) that 
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where 

Then since (Abramowitz & Stegun 1964, p. 559) 

-+ 2@( 1) - @(#) - $(&) - A2 = 2[ln (4/h) - 11 as A + 0, 

where F is the hypergeometric function in the usual notation. Then since (Batchelor 
1953, p. 49) som E ( k ) d k  = 8 
it follows that 

[In (4c{1+ [A;(t~)]~)i) - 11 as 1, -+ 0,  c + 00. (C 4) 

On the other hand the integrals in the second and third equations (5.10) will exist if 
we put c = co in 

3 
u; - 

44  1 + [A; (y)l2)4 

Then for initially isotropic turbulence we find in a similar way that 

Appendix D. Transformation of small-scale turbulence transfer coefficients 
into the Batchelor-Proudman form 

Since qj has determinant one, it follows from the Laplace development of this 
determinant that 

cmnj = C q p l T g r n T p n q j .  

Then since ii = E j K j ,  

and q j  T G ~  = cYli, 

it  follows that Kn&mnj TiI’k = ckpl,fp q j .  
Substituting into (6.3) yields 

which coincides with the result used by Batchelor & Proudman (1954). 

REFERENCES 

ABRAMOWTTZ, M. & STEUUN, I. 

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press. 
BATCHELOR, G. K. 1967 A n  Introduction to Fluid Mechaniw. Cambridge University Press. 
BATCHELOR, G. K. & PROVDMAN, I. 1954 The effect of rapid distortion of a fluid in turbulent 

1964 Handbook of Mathematical Functions. Washington: 
National Bureau of Standards. 

motion. Quart. J .  Mech. Appl. Math. 7, 83. 



508 

BRITTER, R. E., HUNT, J. C. R. & MUMFORD, J. C. 1979 The distortion of turbulence by a cir- 

DARWIN, C. G. 1953 A note on hydrodynamics. Proc. Camb. Phil. SOC. 49, 342. 
DURBIN, P. 1979 Ph.D. thesis, Cambridge University. (See also J .  Inst. Math. Appl .  (1979) 

23, 181). 
E R D ~ L Y I ,  A. 1956 Asymptotic Expansion, p. 51. Dover. 
GOLDSTEIN, M. E. 1976 Aeroacoustics. McGraw-Hill. 
GOLDSTEIN, M. E. 1978 Unsteady vortical and entropic distortions of potential flows around 

arbitrary obstacles. J .  Fluid Mech. 89, 433. 
GOLDSTEIN, M. E. 1979 Turbulence generated by the interaction of entropy fluctuations with 

non-uniform mean flows. J .  Fluid Mech. 93, 209. 
HINZE, J. 0. 1959 Turbulence. McGraw-Hill. 
HUNT, J. C. R. 1973 A theory of turbulent flow round two-dimensional bluff bodies. J .  Fluid 

HUNT, J. C. R. & GRAHAM, J. M. R. 1978 Free-stream turbulence near plane boundaries. J .  

KOVASZNAY, L. S. G. 1953 Turbulence in supersonic flow. J .  Aero. Sci. 20, 657. 
LAMB, H. 1932 Hydrodynamics. Cambridge University Press. 
LIGHTHILL, M. J. 1956 Drift. J .  Fluid Mech. 1, 31. 
LOEHRKE, R .  E. & NAGIB, H. M. 1976 Control of free stream turbulence by means of honey- 

combs: A balance between suppression and generalism. Trans. A.S.M.E. I, J .  Fluids Engng 
98, 342. 

PHILLIPS, 0. M. 1955 The irrotational motion outside of a free boundary layer. Proc. Camb. Phil. 
SOC. 51, 220. 

RIBNER, H. S. & TUCKER, M. 1953 Spectrum of turbulence in a contracting stream. N.A.C.A. 
Rep. 1113. 

TAYLOR, G. I. 1935 Turbulence in a contracting stream. 2. angew. Math. Mech. 15, 91. 
TOWNSEND, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press. 
TUCKER, H. J. & REYNOLDS, A. J. 1968 The distortion of turbulence by irrotational plane strain. 

J .  Fluid Mech. 32, 657. 

M .  E .  Goldstein and P. A .  Durbin 

cular cylinder. J .  Fluid Mech. 92, 269. 

Mech. 61, 625. 

Fluid Mech. 89, 209. 


